

Reg.	No.	:	
Nam	٠.		

Third Semester M.Sc. Degree (Reg.) Examination, October 2018 MATHEMATICS (2017 Admn. Onwards)

MAT3C11: Number Theory

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions. Each question carries 4 marks.

- 1. Prove that every number of the form 2^{a-1} (2^a-1) is perfect if 2^a-1 is prime.
- 2. Solve the congruence $5x \equiv 3 \pmod{24}$.
- 3. If p is an odd prime, prove that $\sum_{r=1}^{p-1} r(r|p) = 0$, if $P \equiv 1 \pmod{4}$.
- 4. If $m \ge 1$, (a, m) = 1 and $f = \exp_m(a)$, then prove that $a^k \equiv a^h \pmod{m}$ if and only if $k \equiv h \pmod{f}$.
- 5. Let Z be a Z-module with the obvious action. Find all the submodules.
- 6. Let $K = Q(\zeta)$, where $\zeta = e^{2\pi i/p}$ for a rational prime p. In the ring of integers of $\mathbb{Z}[\zeta]$, show that $\alpha \in \mathbb{Z}[\zeta]$ is a unit if and only if $N_{\kappa}(\alpha) = \pm 1$. (4×4=16)

PART - B

Answer any four questions without omitting any Unit. Each question carries 16 marks.

Unit - I

- 7. a) State and prove the fundamental theorem of arithmetic.
 - b) Define the Euler totient function $\varphi(n)$ and derive a product formula for it.

- 8. a) Define the Dirichlet product f*g of two arithmetic functions. If both g and f*g are multiplicative, prove that f is also multiplicative.
 - b) Let f be multiplicative. Prove that f is completely multiplicative if and only if $f^{-1}(n) = \mu(n)$ f(n) for all $n \ge 1$.
 - c) Prove that $\varphi^{-1}(n) = \sum_{d|n} d \mu(d)$
- 9. a) State and prove Lagrange's theorem on polynomial congruences.
 - b) State the principle of cross classification. Given integers r, d and k such that d|k, d > 0, k ≥ 1 and (r, d) = 1. Then prove that the number of elements of the set S = {r + td : t = 1, 2,, k/d} which are relatively prime to k is φ(k)/φ(d).

- 10. a) State and prove the quadratic reciprocity law.
 - b) Determine whether 219 is a quadratic residue or non-residue modulo 383.
- 11. a) Let p be an odd prime and let d be any positive divisor of p 1. Prove that in every reduced residue system modulo p there are $\phi(d)$ numbers a such that $\exp_{\mathfrak{o}}(a) = d$.
 - b) If $\alpha \ge 3$, prove that there are no primitive roots mod 2^{α} .
- a) Encipher the message HAVEANICETRIP using a Vigenere cipher with the keyword MATH.
 - b) The ciphertext ALXWU VADCOJO has been enciphered with the cipher $C_1 \equiv 4P_1 + 11P_2 \pmod{26}$, $C_2 \equiv 3P_1 + 8P_2 \pmod{26}$. Derive the plain text.
 - c) Find the unique solution of the knapsack problem $51 = 3 x_1 + 5 x_2 + 9 x_3 + 18 x_4 + 37 x_5.$

- 13. a) Let G be a free abelian group of rank n with basis {x₁, ..., x_n}. Suppose (a_{ij}) is an n x n matrix with integer entries. Prove that the elements
 y_i = ∑_{i=1}ⁿ a_{ij} x_j, (i = 1, ...,n) form a basis of G if and only if (a_{ij}) is unimodular.
 - b) Prove that every subgroup H of a free abelian group of rank n is free of rank s ≤ n.
- 14. a) If K is a number field then prove that $K = Q(\theta)$ for some algebraic number θ .
 - b) Prove that a complex number $\dot{\theta}$ is an algebraic integer if and only if the additive group generated by all powers 1, θ , θ^2 , ..., is finitely generated.
- 15. a) Prove that the ring of integers of the cyclotomic field $Q(\zeta)$, where $\zeta = e^{2\pi i/p}$, p an odd prime is $\mathbb{Z}[\zeta]$.
 - b) Prove that the discriminant of $Q(\zeta)$, where $\zeta = e^{2\pi i/p}$, p an odd prime is $(-1)^{(p-1)/2} p^{p-2}$. (4×16=64)

Reg. No.	!
Name :	***************************************

Third Semester M.Sc. Degree (Reg.) Examination, October 2018 MATHEMATICS (2017 Admn. Onwards) MAT3C12: Functional Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Show that if $x_n \to x$ in l^1 then $x_n \to x$ in l^2 .
- 2. Give an example of an element in L¹ (\mathbb{R}) but not in L² (\mathbb{R}) and prove your claim.
- 3. Show that the norms $\|.\|_1$ and $\|.\|_2$ on K^n , n = 1, 2, ... are equivalent.
- 4. If X is an infinite dimensional space then prove that it contains a hyperspace which is not closed.
- 5. Let X be a normed linear space and (x_n) be a sequence in X. Prove or disprove : (x_n) converges in X if and only if $f(x_n)$ converges in K for every $f \in X'$.
- Give an example of a function on Kⁿ × K⁴ which is linear in the first variable and conjugate symmetric but not an inner product. Also prove your claim.

PART - B

Answer 4 questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit - I

7. a) State and prove Jenson's inequality.

CONTRACTOR OF THE PARTY OF THE PARTY.

b) State and prove Riesz Lemma.

- 8. a) Show that a linear map F from a normed space X to a normed space Y is a homeomorphism if and only if there are α, β > 0 such that β||x|| ≤ ||F(x)|| ≤ α||x|| for all x ∈ X. In case there is a linear homeomorphism from X onto Y then prove that X is complete if and only if Y is complete.
 - b) Let X denote a subspace of B(T) with the sup norm, 1∈X and f be a linear functional on X. If f is continuous and ||f|| = f(1), then prove that f is positive. Conversely, if Rex ∈ X whenever x ∈ X and if f is positive, then prove that f is continuous and ||f|| = f(1).
- a) Let X and Y be normed spaces and X ≠ {0}. Then prove that BL(X, Y) is a Banach space in the operator norm if and only if Y is a Banach space.
 - b) Let X be a normed space and Y be a Banach space. Let X₀ be a dense subspace of X and F₀ ∈ BL(X₀, Y). Then prove that there is a unique F ∈ BL (X, Y) such that F|X₀ = F₀ and ||F|| = ||F₀||.

- 10. a) Let X be a normed space and E be a subset of X. Then prove that E is bounded in X if and only if f(E) is bounded in K for every f ∈ X'.
 - b) Define closed map. If a closed map F is bijective then prove that its inverse F⁻¹ is also a closed map.
- 11. a) State and prove closed graph theorem.
 - b) Define open map and give an example.
- 12. a) Let X and Y be normed spaces and F : X → Y be linear. Then prove that F is an open map if and only if there exists some γ > 0 such that for every y∈ Y, there is some x ∈ X with F(x) = y and ||x|| ≤ γ||y||.
 - b) Show that the open mapping theorem may not hold if the range of the linear map is not a Banach space.

Unit - III

- 13. a) State and prove parallelogram law.
 - b) Let u_a be an orthonormal set in a Hilbert space H. Then prove that the following conditions are equivalent.
 - i) {u } is an orthonormal basis for H.
 - ii) For every $x \in H$, we have $x = \Sigma_n \langle x, u_n \rangle u_n$, where $\{u_1, u_2, ...\} = \{u_\alpha : \langle x, u_n \rangle u_n u_n$, where $\{u_1, u_2, ...\} = \{u_\alpha : \langle x, u_\alpha \rangle \neq 0\}$.

- iii) For every $x \in H$, we have $||x||^2 = \Sigma_n \left| \left\langle x, u_n \right\rangle \right|^2$, where $\{u_1, u_2, ...\} = \{u_\alpha : \left\langle x, u_\alpha \right\rangle \neq 0\}$.
- iv) Span {ua} is dense in H.
- v) If $x \in H$ and $\langle x, u_{\alpha} \rangle = 0$ for all α , then x = 0.
- 14. a) Let X be an inner product space and $f \in X'$. Let $\{u_1, u_2, ...\}$ be an orthogonal set in X. Then prove that $\sum_n |f(u_n)|^2 \le ||f||^2$.
 - b) Prove that the projection theorem does not hold for an incomplete inner product space.
- a) Let (x_n) be a bounded sequence in a Hilbert space H then prove that it has a weak convergent subsequence.
 - b) Let H be a Hilbert space over K. If F_1 and F_2 are closed subspaces of H, then prove that $(F_1 + F_2)^{\perp}$ equals the closure of $F_1^{\perp} + F_2^{\perp}$.

Reg.	No.	:	••••••
	E 9		

Third Semester M.Sc. Degree (Reg.) Examination, October 2018 MATHEMATICS (2017 Admn. Onwards)

MAT3C13 : Complex Function Theory

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions. Each question carries 4 marks.

- 1. Prove that an elliptic function without poles is a constant.
- 2. Define the Weierstrass sigma function $\sigma(z)$ and show that it is an odd function.
- 3. Find a meromorphic function in the plane with a pole at every integer.
- 4. Suppose that f(z) is analytic in a region G which is symmetric with respect to the real axis and f(x) is real for all x in $G \cap \mathbb{R}$. Prove that $f(z) = \overline{f(\overline{z})}$ for all z in G.
- 5. If u is harmonic, show that $f = u_x iu_y$ is analytic.
- 6. Prove or disprove : every harmonic function is subharmonic.

 $(4 \times 4 = 16)$

PART - B

Answer any four questions without omitting any unit. Each question carries 16 marks.

Unit - I

- 7. a) Prove that a discrete module consists either of zero alone, of the integral multiples nw of a single complex number w ≠ 0, or of all linear combinations n₁w₁ + n₂w₂ with integral coefficients of two numbers w₁ and w₂ with nonreal ratio w/ w₁.
 - b) Prove that any two bases of the same period module are connected by a unimodular transformation.

- 8. a) Describe the construction of the Weierstrass P-function.
 - b) Prove that addition theorem for the P-function:

$$P(z + u) = -P(z) - P(u) + \frac{1}{4} \left(\frac{P'(z) - P'(u)}{P(z) - P(u)} \right)^{2}$$

- 9. a) Define the Riemann zeta function $\zeta(z)$. Prove that for Rez > 1, $\zeta(z)$ $\Gamma(z) = \int_{z}^{\infty} (e^{t} 1)^{-1} t^{z-1} dt.$
 - b) Derive Riemann's functional equation $\zeta(z) = 2 (2\pi)^{z-1} \Gamma(1-z) \zeta(1-z)$ $\sin\left(\frac{1}{2}\pi z\right)$ for -1 < Re z < 0.

 a) Let K be a compact subset of the region G. Prove that there are straight line segments r₁, ..., r_n in G – K such that for every function f in H(G),

$$f(z) = \sum_{k=1}^{n} \frac{1}{2\pi i} \int_{r_k} \frac{f(w)}{w-z} dw$$
 for all z in K and the line segments form a finite

number of closed polygons.

- b) Let G be an open connected subset of C. If n(r, a) = 0 for every closed rectifiable curve r in G and every point a in C−G, then prove that C∞−G is connected.
- 11. a) State and prove Mittag-Leffler's theorem.
 - b) Define analytic continuation along a path.
- 12. a) State and prove Schwarz reflection principle.
 - b) With usual assumptions, what is the meaning of saying that a function element (f, D) admits unrestricted analytic continuation in G?
 - c) State monodromy theorem.

- 13. a) State and prove the mean value theorem for harmonic functions.
 - b) Let D = $\{z: |z| < 1\}$ and suppose that $f: \partial D \to \mathbb{R}$ is a continuous function. Prove that there is a unique continuous function $u: D^- \to \mathbb{R}$ such that :
 - i) u(z) = f(z) for all z in ∂D and
 - ii) u(z) is harmonic in D.
- 14. a) If $u: G \to \mathbb{R}$ is a continuous function which has the mean value property, prove that u is harmonic.
 - b) State and prove Harnack's theorem.
- 15. a) Let G be a region and $f: \partial_{\infty}G \to \mathbb{R}$ a continuous function. Prove that $u(z) = \sup \{\phi(z): \phi \in P(f,G)\}$ defines G harmonic function u on G.
 - b) Derive Jensen's formula.

 $(4 \times 16 = 64)$

Reg. No. :	***************************************
------------	---

Name :

Third Semester M.Sc. Degree (Reg.) Examination, October 2018 MATHEMATICS (2017 Admn. Onwards)

MAT3C14 : Advanced Real Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this part. Each question carries 4 marks.

- Give an example of a sequence of functions which converges pointwise but not uniformly.
- 2. If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, prove that $\{f_n + g_n\}$ converges uniformly on E.
- 3. Consider $f(x) = \sum_{n=1}^{\infty} \frac{1}{1+n^2x}$. On what intervals does it fail to converge uniformly?
- 4. Show that e^x defined on \mathbb{R}^1 satisfy the relation $(e^x)' = e^x$.
- 5. Define orthogonal system of functions and give an example.
- 6. Prove that $\lim_{x\to 0} \frac{\log(1+x)}{x} = 1$.

 $(4 \times 4 = 16)$

PART - B

Answer 4 questions from this part without omitting any Unit. Each question carries 16 marks.

Unit - I

- a) If {f_n} is a sequence of continuous function on E, and if f_n → f uniformly on E, then show that f is continuous on E.
 - b) If $f_n \in \mathcal{R}(\alpha)$ on [a, b] and if $f(x) = \sum_{n=1}^{\infty} f_n(x)$ ($a \le x \le b$), the series converging. uniformly on [a, b], then prove that $\int_a^b f d\alpha = \sum_{n=1}^{\infty} \int_a^b f_n d\alpha$.

- 8. a) Even if {f_n} is a uniformly bounded sequence of continuous functions on a compact set E, prove that there need not exist a subsequence which converges pointwise on E.
 - b) If {f_n} is a pointwise bounded sequence of complex functions on a countable set E, then prove that {f_n} has a subsequence {f_{nk}} such that {f_{nk}(x)} converges for every x ∈ E.
- 9. State and prove Stone Weierstrass theorem.

- 10. a) Suppose $\sum c_n$ converges. Put $f(x) = \sum_{n=0}^{\infty} c_n x^n (-1 < x < 1)$. Then prove that $\lim_{x \to 1} f(x) = \sum_{n=0}^{\infty} c_n$.
 - b) Define analytic functions and give an example.
- 11. a) Suppose the series $\sum a_n x^n$ and $\sum b_n x^n$ converge in the segment S=(-R,R). Let E be the set of all $x\in S$ at which $\sum_{n=0}^\infty a_n x^n=\sum_{n=0}^\infty b_n x^n$. If E has a limit point in S, then prove that $a_n=b_n$ for n=0,1,2,.... Hence $\sum_{n=0}^\infty a_n x^n=\sum_{n=0}^\infty b_n x^n$ for all $x\in S$.
 - b) Let $\{\phi_n\}$ be orthonormal on [a,b]. Let $s_n(x) = \sum_{m=1}^n c_m \phi_m(x)$ be the n^{th} partial sum of the Fourier series of f, and suppose $t_n(x) = \sum_{m=1}^n \gamma_m \phi_m(x)$. Then prove that $\int_a^b |f-s_n|^2 dx \le \int_a^b |f-t_n|^2 dx$, and equality holds if and only if $\gamma_m = c_m(m=1,2,...,n)$
- 12. a) If, for some x, there are constants $\delta > 0$ and $M < \infty$ such that $|f(x+t) f(x)| \leq M|t| \text{ for all } t \in (-\delta, \delta), \text{ then prove that } \lim_{N \to \infty} S_N(f; x) = f(x).$
 - b) If f(x) = 0 for all x in some segment J, then prove that $\lim_{x \to \infty} S_{x}(f; x) = 0$ for every $x \in J$.
 - c) If f is continuous (with period 2π) and if $\epsilon > 0$, then prove there is a trigonometric polynomial P such that $|P(x) f(x)| < \epsilon$ for all real x.

- 13. a) Define the dimension of a vector space and give an example.
 - b) Define basis of a vector space.
 - c) Let r be a positive integer. If a vector space X is spanned by a set of r vectors, then prove that dim X ≤ r.
- 14. a) Suppose E is an open set in \mathbb{R}^n , f maps E into \mathbb{R}^m , f is differentiable at $x_0 \in E$, g maps an open set containing f(E) into \mathbb{R}^k , and g is differentiable at $f(x_0)$. Then prove that the mapping F of E into \mathbb{R}^k defined by F(x) = g(f(x)) is differentiable at x_0 and $F'(x_0) = g'(f(x_0)f'(x_0))$.
 - b) Suppose f maps a convex open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , f is differentiable in E, and there is a real number M such that $\|f'(x)\| \le M$ for every $x \in E$. Then prove that $\|f(b) f(a)\| \le M \|b a\|$ for all $a \in E$, $b \in E$.
- State and prove implicit function theorem.

(4×16=64)

THE RESULT OF LINE ALL DRIVES WITH THE TREE

Reg. No.	
Name ·	0.0000000000000000000000000000000000000

III Semester M.Sc. Degree (Reg.) Examination, October 2018 MATHEMATICS (2017 Admn. Onwards) MAT3E01 : Graph Theory

Time: 3 Hours

Max. Marks: 80

- Instructions: 1) Answer any four questions from Part A. Each question carries 4 marks.
 - Answer any 4 questions without omitting any Unit from Part – B. Each question carries 16 marks.

PART - A

- I. Answer any 4 questions. Each question carries 4 marks.
 - 1) Define a (k, l) Ramsay graph and give one example.
 - 2) In a critical graph, prove that no vertex cut is a clique.
 - 3) For a bipartite graph G, show that χ' (G) = Δ .
 - 4) If G is a planar graph then prove that every subgraph of G is planar.
 - 5) Let I be a flexible vertex labelling of G. If G_I contains a perfect matching M*, then prove that M* is an optimal matching of G.
 - 6) Let u and v be two distinct vertices of a graph G. Then prove that a set S of vertices of G is u - v separating if and only if every u - v path has at least one internal vertex belonging to S.

PART - B

Answer any 4 questions without omitting any unit. Each question carries 16 marks.

Unit - I

- II. a) Define the independence number and covering number of a graph and prove that the sum of the independence number and covering number is the number of vertices.
 - b) Define the Ramsay number r(k, l) and show that $r(k, k) \ge 2^{k/2}$.

8

Ш,	a)	If a simple graph G contain no K_{m+1} , then prove that G is degree majorised by same complete m-partite graph H. Also show that if G has the same degree sequence as H then G \approx H.	8
	b)	Define the chromatic number χ (G) of a graph G. Give example of a critical graph and a graph which is not critical. Also for a graph G, show that $\chi \leq \Delta + 1$. Give an example of a graph where $\chi = \Delta + 1$.	8
IV.	a)	For any positive integer k, prove that there exist a k-chromatic graph containing no triangles.	8
	b)	If G is 4-chromatic, then prove that G contain a subdivision of k ₄ .	8
		Unit – II	
٧.	a)	If G is bipartite show that $\chi' = \Delta$.	5
	b)	Let G be a connected graph that is not an odd cycle, then prove that G has a 2-edge colouring in which both colours are represented at each vertex of degree at least two.	6
	c)	What is a time tabling problem and explain how one can solve the time tabling problem using edge colouring?	5
VI.	a)	Define a dual graph of a graph G and prove or disprove – "Dual of isomorphic plane graph are isomorphic".	6
	b)	If G is a connected plane graph, then prove that $V - \Sigma + \phi = 2$, further deduce that K_5 is non planar.	10
VII.	Sta	ate and prove Kuratowski's theorem.	16
		Unit – III	
VIII	.a)	In a bipartite graph, prove that the number of edges in a maximum matching is equal to the number of vertices in a maximum covering.	10
	b)	If G is a k-regular bipartite graph with $k > 0$ then prove that G has a perfect matching.	6
IX.	a)	Prove that every 3-regular graph without cut edge has a perfect matching.	6
	b)	Explain in detail the Hungarian method to find an M-augmenting path in a graph and draw its flow-chart.	10
X	. a)	Let f be a flow on a network N = (V, A) and let f have value d. If A (X, \overline{X}) is a cut in N then prove that d = f (X, \overline{X}) - f (\overline{X} , X). Also prove that	
		$d \le C(X, \overline{X}).$	8
	b	State and prove Mengers theorem.	. 8